top of page

TYPES OF EXTINGUISHERS

iStock-1192341605-1024x605.jpg

In the hands of a trained person, portable fire extinguishers are great tools to protect people and property from fire during early stages. When using an extinguisher or selecting an extinguisher to install, it’s important to know the characteristics of different fire extinguishers. This blog will address the different types of fire extinguishers by breaking them down by their extinguishing agent, which is the material inside the extinguisher that gets applied to the fire.

Fire Extinguisher Types

Water

Water is the primary liquid used in these extinguishers, although sometimes other additives are also included. A drawback for pure water fire extinguishers is that it is not suitable for use in freezing conditions since the water inside will freeze and render the extinguisher unusable. Certain types of water fire extinguishers contain antifreeze which will allow the extinguisher to be used in freezing conditions. Water type fire extinguishers can also sometimes contain wetting agents which are designed to help increase its effectiveness against fire. These extinguishers are intended primarily for use on Class A fires.  

Water mist extinguishers are a type of water fire extinguisher that uses distilled water and discharges it as a fine spray instead of a solid stream. Water mist extinguishers are used where contaminants in unregulated water sources can cause excessive damage to personnel or equipment. Typical applications include operating rooms, museums, and book collections.

​

Film-forming foam type

AFFF (aqueous film-forming foam) and FFFP (film-forming fluoroprotein) fire extinguishers are rated for use on both Class A and Class B fires. As the name implies, they discharge a foam material rather than a liquid or powder. They are not suitable for use in freezing temperatures. An advantage of this type of extinguisher when used on Class B flammable liquid fires of appreciable depth is the ability of the agent to float on and secure the liquid surface, which helps to prevent reignition.

​

Carbon Dioxide type

The principal advantage of Carbon Dioxide (CO2) fire extinguishers is that the agent does not leave a residue after use. This can be a significant factor where protection is needed for delicate and costly electronic equipment. Other typical applications are food preparation areas, laboratories, and printing or duplicating areas. Carbon dioxide extinguishers are listed for use on Class B and Class C fires. Because the agent is discharged in the form of a gas/snow cloud, it has a relatively short range of 3 ft to 8 ft (1 m to 2.4 m). This type of fire extinguisher is not recommended for outdoor use where windy conditions prevail or for indoor use in locations that are subject to strong air currents, because the agent can rapidly dissipate and prevent extinguishment. The concentration needed for fire extinguishment reduces the amount of oxygen in the vicinity of the fire and should be used with caution when discharged in confined spaces.

​

Halogenated agent types

Halon

The bromochlorodifluoromethane (Halon 1211) fire extinguisher has an agent that is similar to carbon dioxide in that it is suitable for cold weather installation and leaves no residue. It is important to note that the production of Halon has been phased out because of the environmental damage it causes to the earth’s ozone.  Some larger models of Halon 1211 fire extinguishers are listed for use on Class A as well as Class B and Class C fires. Compared to carbon dioxide on a weight-of-agent basis, bromochlorodifluoromethane (Halon 1211) is at least twice as effective. When discharged, the agent is in the combined form of a gas/mist with about twice the range of carbon dioxide. To some extent, windy conditions or strong air currents could make extinguishment difficult by causing the rapid dispersal of the agent.

​

Halon Alternative Clean Agents

There are several clean agents that are similar to halon agents in that they are nonconductive, noncorrosive, and evaporate after use, leaving no residue. Larger models of these fire extinguishers are listed for Class A as well as Class B and Class C fires, which makes them quite suitable for use on fires in electronic equipment. When discharged, these agents are in the combined form of a gas/mist or a liquid, which rapidly evaporates after discharge with about twice the range of carbon dioxide. To some extent, windy conditions or strong air currents could make extinguishing difficult by causing a rapid dispersal of agent. Clean agent type extinguishers don’t have a detrimental effect on the earth’s ozone so these are more widely available than Halon type extinguishers.

​

Dry chemical types

Ordinary Dry Chemical

The fire extinguishing agent used in these devices is a powder composed of very small particulates. Types of agents available include sodium bicarbonate base and potassium bicarbonate base. Dry chemical type extinguishers have special treatments that ensure proper flow capabilities by providing resistance to packing and moisture absorption (caking).

​

Multipurpose Dry Chemical

Fire extinguishers of this type contain an ammonium phosphate base agent. Multipurpose agents are used in exactly the same manner as ordinary dry chemical agents on Class B fires. For use on Class A fires, the multipurpose agent has the additional characteristic of softening and sticking when in contact with hot surfaces. In this way, it adheres to burning materials and forms a coating that smothers and isolates the fuel from air. The agent itself has little cooling effect, and, because of its surface coating characteristic, it cannot penetrate below the burning surface. For this reason, extinguishment of deep-seated fires might not be accomplished unless the agent is discharged below the surface or the material is broken apart and spread out.

​

Wet chemical

The extinguishing agent can be comprised of, but is not limited to, solutions of water and potassium acetate, potassium carbonate, potassium citrate, or a combination of these chemicals (which are conductors of electricity). The liquid agent typically has a pH of 9.0 or less. On Class A fires, the agent works as a coolant. On Class K fires (cooking oil fires), the agent forms a foam blanket to prevent reignition. The water content of the agent aids in cooling and reducing the temperature of the hot oils and fats below their autoignition point. The agent, when discharged as a fine spray directly at cooking appliances, reduces the possibility of splashing hot grease and does not present a shock hazard to the operator. Wet chemical extinguishers also offer improved visibility during firefighting as well as minimizing cleanup afterward.

​

Dry powder types

These fire extinguishers and agents are intended for use on Class D fires and specific metals, following special techniques and manufacturer’s recommendations for use. The extinguishing agent can be applied from a fire extinguisher or by scoop and shovel. Using a scoop or shovel is often referred to as a hand propelled fire extinguisher.

​

Conclusion

While there are many different types of fire extinguishers used for different applications it is also important to know the rating of each extinguisher which will let you know the types of fires it is meant to be applied to. 

​

​

bottom of page